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SPATIAL SIMPLE WAVES ON A SHEAR FLOW

UDC 532.592.2; 517.958V. M. Teshukov

The paper studies simple waves of the shallow-water equations describing three-dimensional wave
motions of a rotational liquid in a free-boundary layer. Simple wave equations are derived for the
general case. The existence of unsteady or steady simple waves adjacent continuously to a given steady
shear flow along a characteristic surface is proved. Exact solutions of the equations describing steady
simple waves were found. These solutions can be treated as extension of Prandtl–Mayer waves for
sheared flows. For shearless flows, a general solution of the system of equations describing unsteady
spatial simple waves was found.

1. Formulation of the Problem. The paper considers the equations

ut + (U · ∇)u+ px/ρ = 0, vt + (U · ∇)v + py/ρ = 0,

pz/ρ = −g, divU = 0
(1.1)

describing unsteady three-dimensional motions of an ideal incompressible fluid in a long-wave approximation. Model
(1.1) is the long-wave limit ε = H0/L0 → 0 of the exact Euler equations (H0 is the characteristic vertical scale
and L0 is the characteristic horizontal scale). Here U = (u, v, w) is the fluid velocity, p is the pressure, g is the
acceleration of gravity, ρ = const is the fluid density, x, y, and z are the Cartesian coordinates in space, and t

is time. The present paper focuses on the free-boundary problem for system (1.1) that describes wave motions of
a fluid in the layer 0 6 z 6 h(t, x, y), where h is the fluid-layer depth. Let us formulate boundary conditions of
the problem. On the even bottom z = 0, the boundary condition w = 0 is specified, and the dynamic condition
p = p0 = const is imposed on the free surface. The kinematic condition on the free boundary can be written as

ht + div

( h∫
0

u dz

)
= 0,

where u = (u, v) is the projection of the velocity onto a plane orthogonal to the z axis. Using the third equation of
the system, we derive the hydrostatic distribution of pressure over the depth:

p = p0 + ρg(h− z).

In the approximate theory considered, the curl vector Ω = (−vz, uz, vx − uy) satisfies the equation

Ωt + (U · ∇)Ω = (Ω · ∇)U .

Equations for the first two components of the vector Ω are written as

−vzt − (U · ∇)vz + vzux − uzvx = 0, uzt − (U · ∇)uz + vzuy − uzvy = 0. (1.2)

From (1.2) it follows that if the equalities uz = 0 and vz = 0 hold for t = 0, then uz = 0 and vz = 0 for t > 0. In
the last case, system (1.1) reduces to the classical shallow-water equations

ut + (u · ∇)u+ ghx = 0, vt + (u · ∇)v + ghx = 0,

ht + div (hu) = 0, w = −z(ux + vy),
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which describe flows free of a vertical shear of velocity (u and v do not depend on the variable z). In the general
case, however, the vertical profiles of velocity can be rather arbitrary. Below, by shear flow is meant the class of
solutions of Eqs. (1.1) characterized by the inequality u2

z + v2
z 6= 0. By uniform shear flow is meant a particular

solution of (1.1) with the functions independent of x, y, and t:

u = u0(z), v = v0(z), w = 0, p = −ρgz + const.

In analysis of shear flows, it is convenient to convert Eqs. (1.1) to the Eulerian–Lagrangian variables t′, x′, y′, and λ.
The change of variables

x = x′, y = y′, t = t′, z = Φ(t′, x′, y′, λ)

is performed using the function Φ (which is a solution of the Cauchy problem):

Φt + u(t, x, y,Φ)Φx + v(t, x, y,Φ)Φy = w(t, x, y,Φ), Φ|t=0 = Φ0(x, y, λ).

The initial data Φ0(x, y, λ) are chosen so as to satisfy the conditions Φ0(x, y, 0) = 0 and Φ0(x, y, 1) = h0(x, y)
= h(0, x, y). Here λ is a Lagrangian coordinate that marks the material surfaces. From the above equation, it
follows that Φ(t, x, y, 0) = 0 and Φ(t, x, y, 1) = h(t, x, y). Therefore, in the new variables, the region occupied by
the fluid transforms into the fixed layer 0 6 λ 6 1.

In the Eulerian–Lagrangian variables, the equations governing fluid motion take the form

ut + (u · ∇)u+ g∇h = 0, Ht + div(Hu) = 0. (1.3)

Here H = Φλ 6= 0 is the Jacobian of the conversion to the new variables (the primes of the independent variables
are omitted); the operations ∇ and div are performed with respect to the variables x and y. The functions Φ, w,
and h are expressed in terms of the vector u and Jacobian H by the relations

Φ =

λ∫
0

H dν, w = Φt + uΦx + vΦy, h =

1∫
0

H dλ.

In the new variables, the shear flows are characterized by the inequality u2
λ + v2

λ 6= 0.
Particular solutions of the form u = u(α, λ) and H = H(α, λ), where α = α(t, x, y), are called the simple

waves of system (1.5). In the Eulerian coordinates, they correspond to the solutions of system (1.1) that satisfy the
equalities

u = u(α, z), h = h(α).

In this class of solutions, the vertical velocity component is given by

w = −
z∫

0

uα(α, z′)dz′ · ∇α.

From (1.3), we obtain the simple wave equations

uα
dα

dt
+ ghα∇α = 0, Hα

dα

dt
+H(uα · ∇α) = 0. (1.4)

Here dα/dt = αt + (u · ∇)α. Below, we prove the existence of spatial simple waves propagating over an arbitrary
uniform shear flow, derive new exact solutions in this class, and construct a general solution of the simple-wave
equations in the class of shearless flows. We note that previous studies were concerned primarily with plane–parallel
flows. Thus, Teshukov [1] and Liapidevskii and Teshukov [2] studied the problem of the existence of solutions for
plane–parallel flows of vortical shallow water. A number of exact solutions describing the propagation of simple
waves over plane–parallel shear flow were derived in [1, 3–9]. Some properties of spatial simple waves for gas-dynamic
equations were analyzed by Ovsyannikov [10].

2. Transformation of Simple-Wave Equations. We multiply the first equation in system (1.4) by uα
and then, using the second equation, eliminate uα · ∇α. Assuming that dα/dt 6= 0, we obtain the equality

(uα)2 = ghαHα/H. (2.1)
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Using Eqs. (1.4), we find the derivatives of the function α:

∇α = − 1
ghα

dα

dt
uα = Luα,

αt = −u · ∇α− (Hα/H)uα · ∇α = −L(u · uα + ghα)

and establish that the ratio
uα/(u · uα + ghα) = −∇α/αt (2.2)

does not depend on λ [the ratio on the right side of equality (2.2) is a function of the variables t, x, and y]. Hence,
we can write

uα/(u · uα + ghα) = n(α)/k(α), (2.3)

where n(α) is a specified unit vector and k(α) is the unknown function. It follows from (2.2) that the vector n is
orthogonal to the surface α = const, and k is the normal velocity of motion of the surface α = const. Using the
consequence of Eqs. (2.3)

u · uα = un(u · uα + ghα)/k,

we reduce Eqs. (2.1) and (2.3) to the form

uα = −ghαn/(un − k), Hα = ghαH/(un − k)2. (2.4)

Here un = u · n. We note that Teshukov [11] (see also Liapidevskii and Teshukov [2]) proposed an extension of
the theory of characteristics for systems with operator coefficients that makes it possible, in particular, to find the
characteristic surfaces of the integrodifferential equations (1.3). Integration of the last equation over the variable λ
yields the characteristic equation

1 = g

1∫
0

H dλ

(un − k)2
, (2.5)

from which it follows that each surface α = const is a characteristic surface of system (1.3). Analyzing the behavior
of the function of k on the right side of equality (2.5), we readily establish the existence of two real roots of the
characteristic equation (k1 and k2) that satisfy the inequalities k1 < minun and k2 > maxun (here the minimum
and maximum of the function un are evaluated with respect to the variable λ). Therefore, below we consider the
simple waves corresponding to both the first an second characteristic families. Equations (2.4) are similar in form
to the simple-wave equations for plane–parallel shear flow [1]. If we set n = n0 = const and u = un0, Eqs. (2.4)
and (2.5) reduce to the simple-wave equations for plane–parallel flow. Generally, in the spatial case, it is convenient
to introduce the normal (un) and tangent (uτ ) velocity vectors to the simple-wave front:

u = unn+ uττ . (2.6)

Here n = (cosβ, sinβ), τ = (− sinβ, cosβ), and β = β(α) is a specified function.
Differentiation of (2.6) with respect to the variable α yields the following representation of the derivative in

the basis n and τ :

uα = ((un)α − (β′)uτ )n+ ((uτ )α + β′un)τ . (2.7)

Using (2.7), we write Eqs. (2.4) and (2.5) in the form

(un)α +
ghα
un − k

− β′uτ = 0, (uτ )α + β′un = 0, Hα =
ghαH

(un − k)2
. (2.8)

Combination of the first two equations in system (2.8) yields the following second-order equation for the un-
known un: ( 1

β′

(
(un)α +

ghα
un − k

))
α

+ β′un = 0. (2.9)

The integrodifferential equations (2.5) and (2.8) form a closed system for determining the velocity u and
the quantity H as functions of the variables α and λ. Next, we write the equations defining the function α(t, x, y).
The following equality is valid on the surface α = const:

αtdt+∇α · dx = 0.
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From this, by virtue of (2.2) and (2.3), we obtain the relation

n(α) · dx− k(α) dt = 0. (2.10)

Since the coefficients of the differential form are constant on the surface α = const, we integrate equality (2.10):

n(α) · x− k(α)t = m(α). (2.11)

Here m(α) is an arbitrary function. The function α(t, x, y) can be found from Eq. (2.11) for m(α) fixed. The
following equation can be used instead of (2.11):

uα · x/(u · uα + ghα)− t = m(α). (2.12)

Let us show that if we specify the arbitrary functions β(α) and m(α), integrate Eqs. (2.8), and find α(t, x, y)
from (2.11), then, the functions u, H, and α obtained will satisfy Eqs. (1.4). Here we assume that the inequality
nα · x− k′(α)t−m′(α) 6= 0 holds. Using this condition, we apply the implicit-function theorem to Eq. (2.11) and
find α(t, x, y) locally.

Differentiation of (2.11) with respect to the variables x and t yields

(nα · x− k′(α)t−m′(α))∇α+ n = 0, (nα · x− k′(α)t−m′(α))αt − k = 0. (2.13)

Using Eqs. (2.8) and their consequences (2.4), from (2.13) we obtain the relations

∇α = L1uα,
dα

dt
= αt + (u · ∇)α = −gL1hα, (2.14)

where L1 = −k(nα · x− k′(α)t−m′(α))−1(u · uα + ghα)−1. Obviously, (2.14) implies the equalities

uα
dα

dt
+ ghα∇α = 0, Hα

dα

dt
+Huα · ∇α = L1(−gHαhα + u2

α) = 0.

Thus, u, H, and α satisfy (1.4). Relation (2.14) implies the potentiality of the vector u:

u(α, λ) = ∇φ(x, y, λ) (2.15)

(the potential exists because uααy − vααx = 0). The potential φ is defined by the formula

φ = x · u−
( |u|2

2
+ gh

)
t−

α∫
α0

(u · uα + ghα)(α′, λ)m(α′) dα′. (2.16)

Indeed, relation (2.15) is a consequence of relation (2.12) and equality (2.16) differentiated with respect to x.
Differentiating (2.16) with respect to t and using (2.12), we obtain an analogue of the Cauchy–Lagrange integral:

φt = −|u|2/2− gh.

In Eulerian variables, the vector u is not potential. Upon change of the variables, the equality uy(α, λ) −vx(α, λ) = 0
reduces to

Ω · ν = 0,

where ν is a normal vector to the surface λ = const in the three-dimensional space (x, y, z). Hence, in Eulerian
variables, a simple wave is characterized by vanishing of the normal component of the curl on the above-mentioned
family of material surfaces. By virtue of the Helmholtz theorems, the normal vortex component remains zero during
flow evolution if it vanishes at t = 0.

Below, instead of the finite relation (2.5), it is more convenient to use the equivalent differential equation
derived by differentiating (2.5) with respect to α and using Eqs. (2.8). As a result, we have

kα = −

(
2

1∫
0

H dλ

(un − k)3

)−1(
3ghα

1∫
0

H dλ

(un − k)4
+ 2β′

1∫
0

Huτ dλ

(un − k)3

)
. (2.17)

If the Cauchy data for (2.17) are chosen such that (2.5) is satisfied on the initial surface, equality (2.5) is a
consequence of (2.8) and (2.17) for all α.

As a result, construction of a simple wave reduces to integration of the system of integrodifferential equa-
tions (2.8) and (2.17). If the functions un, uτ , H, and k are known, the vector u is defined by formula (2.6), and
α(t, x, y) can be found from Eq. (2.11).
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3. Simple Waves on Spatial Shearless Flow. The simple-wave equations are easily integrated in the
class of flows without a vertical shear, defined by the equalities uλ = vλ = 0. In this case, the characteristic
equation (2.5) reduces to the form

(un − k)2 = gh,

and un−k = ±
√
gh in the domain of definition of a simple wave. In this section, we assume that α(t, x, y) = h(t, x, y).

Integration of Eq. (2.4) yields

u(h) = ∓
h∫

h0

√
g/h′(cosβ(h′), sinβ(h′)) dh′ + u0.

Here h0 = const and u0 is an arbitrary constant vector. A similar relation is obtained by integrating Eq. (2.9). We
assume that the function β = β(h) is monotonic, and, hence, can be inverted: h = h(β). With allowance for this,
Eq. (2.9) is written as

(un ± 2
√
gh)ββ + (un ± 2

√
gh) = ±2

√
gh. (3.1)

We note that after the replacement un → u, the quantities un ± 2
√
gh coincide with the Riemann invariants used

in studies of plane–parallel flows. The general solution of Eq. (3.1) has the form

un ± 2
√
gh =

(
A0 ± 2

β∫
β0

√
gh(β′) cosβ′ dβ′

)
sinβ +

(
B0 ∓ 2

β∫
β0

√
gh(β′) sinβ′ dβ′

)
cosβ, (3.2)

where A0 and B0 are arbitrary constants. From (2.8), we obtain

uτ = (un ± 2
√
gh)β =

(
A0 ± 2

β∫
β0

√
gh(β′) cosβ′ dβ′

)
cosβ

−

(
B0 ∓ 2

β∫
β0

√
gh(β′) sinβ′ dβ′

)
sinβ. (3.3)

Formulas (3.2) and (3.3) define completely (with appropriate choice of arbitrary constants) the velocity vector

u(h) = (un cosβ − uτ sinβ, un sinβ + uτ cosβ)

= ∓2
√
gh(cosβ(h), sinβ(h))∓

( β∫
β0

√
gh(β′) sinβ′ dβ′,−

β∫
β0

√
gh(β′) cosβ′ dβ′

)
+ (B0, A0)

in a simple wave adjacent to a specified constant flow of depth h = h0 moving with velocity u(h0) (on the contact
surface β = β0). The function h is obtained from the equation

cosβ(h)x+ sinβ(h)y − (un ±
√
gh)t = m(h),

where m(h) is an arbitrary function. We note that relations (2.2) and (2.3) imply the following differential equation
for the function h(t, x, y):

ht + (un ±
√
gh)(cosβhx + sinβhy) = 0. (3.4)

Therefore, to find h, it is necessary to solve the Cauchy problem

h
∣∣∣
t=0

= h0(x, y)

for Eq. (3.4) with special initial data. The initial function h0(x, y) must be a solution of the equation

− sinβ(h0)h0x + cosβ(h0)h0y = 0.

With such a choice, the level lines h0(x, y) are straight lines and the level surfaces h(t, x, y) are planes.
As a result, it is shown that the general solution of the equations of spatial simple waves propagating over

a flow without a velocity shear depends on the two arbitrary functions of the same argument: β(h) and m(h).
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4. Existence of an Unsteady Simple Wave Propagating over the Shear Flow. We choose the
function α(t, x, y) = h(t, x, y). Let us consider the Cauchy problem

(un)h = −g/(un − k) + β′uτ , (uτ )h = −β′un, Hh = gH/(un − k)2,

kh = −

(
2

1∫
0

H dλ

(un − k)3

)−1(
3g

1∫
0

H dλ

(un − k)4
+ 2β′

1∫
0

Huτ dλ

(un − k)3

)
, (4.1)

un

∣∣∣
h=h0

= u0(λ)n(h0), uτ

∣∣∣
h=h0

= u0(λ)τ (h0), H
∣∣∣
h=h0

= H0(λ), k
∣∣∣
h=h0

= k0.

Here u0(λ) and H0(λ) are given functions and k0 is a root of Eq. (2.5) calculated for h = h0 using the Cauchy
data. The functions β(h) and, hence, n(h) = (cosβ(h), sinβ(h)) and τ (h) = (− sinβ(h), cosβ(h)) are given. It is
assumed that the function β(h) is twice differentiable. The Cauchy data in (4.1) provide for continuous joining of
the simple wave and the given uniform shear flow with constant depth h = h0 and velocity u0(λ).

Let us prove the existence of a solution of the problem (4.1), assuming that the functions u0(λ) and H0(λ)
are continuously differentiable if λ ∈ [0, 1], |u0(λ) · n(h0)− k0| > δ > 0, and |H0| > δ > 0 (δ is a constant). The
simple-wave equations (4.1) are integrodifferential; therefore, to prove the existence of a solution of the Cauchy
problem, we use the following theorem for differential equations in Banach space [12].

The Cauchy problem

dV

dh
= F (V ), V

∣∣∣
h=h0

= V0 (4.2)

has a unique solution defined for |h − h0| < min(εM−1,K−1), which belongs to a ball ‖V − V0‖ < ε of a Banach
space B if the nonlinear operator F on this ball satisfies the inequalities

‖F (V )‖ < M, ‖F (V1)− F (V2)‖ 6 K‖V1 − V2‖. (4.3)

Since we seek solutions differentiable with respect to λ, let us extend Eqs. (4.1) to the derivatives unλ and uτλ:

(unλ)h = gunλ/((un − k)2) + β′uτλ, (uτλ)h = −β′unλ,

unλ

∣∣∣
h=h0

= u′0(λ)n(h0), uτλ

∣∣∣
h=h0

= u′0(λ)τ (h0).
(4.4)

We introduce a Banach surface B of elements V = (un, unλ, uτ , uτλ,H, k) with a norm

‖V ‖ = max
λ
|un|+ max

λ
|unλ|+ max

λ
|uτ |+ max

λ
|uτλ|+ max

λ
|H|+ |k|,

where λ ∈ [0, 1]. Let V0 ∈ B be the vector of the initial data of the problem (4.1), (4.4). We consider a ball
‖V − V0‖ < δ/2. For the elements of this ball, |un − k| > δ/2 and |H| > δ/2. Indeed,

|un − k| = |un0 − k0 + un − un0 + k0 − k| > |un0 − k0| − ‖V − V0‖ > δ/2,

|H| = |H0 +H −H0| > |H0| − ‖V − V0‖ > δ/2.

Taking the above inequalities into account, it is easy to show that the right sides of Eqs. (4.1) and (4.4) satisfy
inequalities of the form of (4.3) with some M = M(δ) and K = K(δ). Then, by virtue of the theorem formulated
above, the problem (4.1), (4.4) has a unique solution for |h− h0| < δ1(δ).

To complete the construction of a simple wave, it is necessary to find the function h(t, x, y) from the equation

n(h)x− k(h)t = m(h). (4.5)

It follows from (4.5) that the level surfaces h = const are planes in the space (x, y, t). Since these planes are generally
nonparallel, it is impossible to determine h unambiguously at points of intersection of the planes. Therefore, a
simple-wave solution can be constructed only locally in subdomains of the space (x, y, t) that do not contain points
of intersection of the above-mentioned planes.
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5. Simple Waves on a Steady Shear Flow. Let us consider a simple wave on a steady shear flow. In
this case, Eq. (2.1) also holds for α = α(x, y). Using the relations

∇α = −u · ∇αuα/(ghα) = Luα,

0 = −u · ∇α− (H/Hα)uα · ∇α = −L(u · uα + ghα)

(as in Sec. 2), we obtain the differential equations

uα = −ghαn/un, Hα = ghαH/u
2
n, (5.1)

where un = u · n, n = (− sin γ, cos γ), and γ = γ(α) is the unknown function (it was a given function in the
unsteady case). This function can be found using the characteristic equation

1 = g

1∫
0

H dλ

u2
n

. (5.2)

By the definition, γ(α) specifies the angle between the x axis and the direction of the characteristic α = const in the
plane (x, y). Below, we specify which of the two possible values of the angle is denoted by γ(α). Let us introduce
polar coordinates q and θ on a hodograph plane using the relation u = q(cos θ, sin θ) and setting α(x, y) = h(x, y).
In the new variables, we write Eqs. (5.1) as

qqh + g = 0, θh = −gcot (θ − γ)/q2, Hh = gH/(q2 sin2(θ − γ)) (5.3)

and the characteristic equation (5.2) as

χ(γ) = 1− g
1∫

0

H dλ

q2 sin2(θ − γ)
= 0. (5.4)

It follows from (5.4) that χ(γ) is a periodic function: χ(γ) = χ(γ + π). We note that the angles γ and
γ + π, differing in sign, correspond to normals to the same characteristic surface. Therefore, in what follows, we
shall seek only such roots γ of the characteristic equation that differ in the modulus π. The function χ is defined
on the subset of the real axis consisting of a complement to the segments [θmin(h) + lπ, θmax(h) + lπ], where l is an
arbitrary integer [the segments are obtained by shifting the value area of the function θ(h, λ) by lπ for fixed h and
0 6 λ 6 1]. The domain of definition is not empty if θmax(h)− θmin(h) < π. In the last case, we choose the angle
γ such that the inequality |(θmax + θmin)/2− γ| < π/2 is satisfied. With allowance for this, it will suffice to study
the behavior of the function χ(γ) on the segments [θmax− π, θmin] and [θmax, θmin + π]. This continuous function is
finite at the interior points of the indicated segments and tends to −∞ if γ tends to the end-points of the segments.
Hence, χ(γ) takes a maximum value at a certain interior point γ = γ∗(h) of the segment [θmax − π, θmin]. Because
the segment [θmax, θmin + π] is obtained by shifting [θmax − π, θmin] by π, it follows that χ(γ) takes a maximum
value at the point γ∗ + π of the last segment. Calculation of the derivatives yields the inequality

χ′′(γ) = −2g

1∫
0

H(1 + 2 sin2(θ − γ)) dλ
q2 sin4(θ − γ)

< 0.

Then, χ′(γ) < 0 for γ ∈ (γ∗, θmin) and χ′(γ) > 0 for γ ∈ (θmax, γ∗ + π). From the aforesaid it follows that
if χ(γ∗) = χ(γ∗ + π) > 0, Eq. (5.4) has only two different by the modulus π roots (γ1 and γ2) that satisfy the
inequalities γ∗ < γ1 < θmin and θmax < γ2 < γ∗ + π. If χ(γ∗) = χ(γ∗ + π) < 0, Eq. (5.4) has no real roots, and
in the case χ(γ∗) = χ(γ∗ + π) = 0, the root becomes multiple (by the modulus π), which leads to degeneration of
systems of this type. We note that 0 < θ − γ < π for γ ∈ (γ∗, θmin) and −π < θ − γ < 0 for γ ∈ (θmax, γ∗ + π).

Thus, the necessary and sufficient condition of the existence of different (by the modulus π) real roots of
the characteristic equation (5.4) reduces to the inequalities θmax(h) − θmin(h) < π and χ(γ∗) > 0. The latter
must be satisfied only at the points γ∗, where χ′(γ∗) = 0. It is easy to show that for flows without a vertical
velocity shear (i.e., for θλ = 0 and qλ = 0), the criterion formulated reduces to the well-known condition of flow
supercriticality q > (gh)1/2.
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Differentiation of the characteristic equation (5.4) with respect to the variable h yields the following inte-
grodifferential equation for the function γ(h):

γh = −3g
2

( 1∫
0

H cos(θ − γ) dλ
q2 sin3(θ − γ)

)−1 1∫
0

H dλ

q4 sin4(θ − γ)
. (5.5)

Differentiating (5.3) with respect to λ, we obtain the following differential equations for the derivatives qλ and θλ:

qλh =
gqλ
q2

, θλh =
gθλ

q2 sin2(θ − γ)
+

2g cot (θ − γ)qλ
q3

. (5.6)

The system of integrodifferential equations (5.3), (5.5), and (5.6) can be written in the form of (4.2) for the
unknown vector V = (q, qλ, θ, θλ,H, γ). The simple wave joins continuously given uniform shear flow in which
h = h0, q = q0(λ), θ = θ0(λ), H = H0(λ), and γ = γ0 = const, if appropriate Cauchy conditions V (h0, λ) = V0(λ)
are specified for h = h0. Here γ0 is a root of the characteristic equation (5.4) calculated for q = q0(λ), θ = θ0(λ), and
H = H0(λ). In the Eulerian variables, the uniform shear flow parameters are specified by the relations u = u0(z),
v = v0(z), w = 0, and h = h0 = const.

Using the theorem of solvability of the Cauchy problem for the differential equation in Banach space, the
existence of a simple wave for |h − h0| < ε(δ) can be proved (in the same manner as in Sec. 4) if the initial data
are continuous and satisfy the inequalities H0 > δ > 0, π − δ > |θ0 − γ0| > δ > 0, and |γ0 − γ∗(h0)| > δ > 0. We
assume that the condition providing for the existence of different real roots of the characteristic equation is also
satisfied. If a solution of Eqs. (5.3), (5.5), and (5.6) is found, the function h(x, y) is determined locally in a certain
subdomain of the plane (x, y) using the equation

n(h) · x = m(h). (5.7)

Here n(h) = (− sin γ(h), cos γ(h)) and m(h) is an arbitrary function.
6. Analogue of the Prandtl–Mayer Simple Wave for Shear Flows. In gas dynamics and shallow-

water theory, the steady-state simple-wave solution describing flow around a convex corner — Prandtl–Mayer flow —
is known [10]. Below, we extend this solution to flows with a vertical shear.

Integrating the first equation of (5.3), we obtain an analogue of the Bernoulli integral:

q2 + 2gh = q2
m(λ), (6.1)

where qm(λ) is an arbitrary positive function. We find a particular solution of Eqs. (5.3) assuming that the modulus
of the horizontal velocity is independent of the vertical Lagrangian coordinate λ. This corresponds to the following
choice of the arbitrary function in (6.1): qm(λ) = const. Then, from Eqs. (5.3) and (5.6), we have

(θλ/H)h = 0.

Let us consider a particular solution of this equation θλ/H = A, where A = const. Using the relation obtained, we
find

θ = AΦ + θ0 = Az + θ0,

where the angle θ0(h) between the x axis and the velocity direction on the bottom satisfies the differential equation

θ0h = −gcot (θ0 − γ)/q2.

The integral in (5.4) converges for some real γ only if θmax − θmin = |A|h < π in the domain of definition of
the simple wave. The characteristic equation (5.4) is integrated to give

χ(γ) = 1 + g(cot (θ1 − γ)− cot (θ0 − γ))/(Aq2) = 0. (6.2)

Here θ1 = θ0 +Ah. Representing θ1 − γ as θ1 − θ0 + θ0 − γ and using the trigonometric formula for the cotangent
of the sum of the angles, we reduce Eq. (6.2) to a quadratic equation for cot (θ0 − γ)/q2. From this equation, we
find

cot (θ0 − γ1,2)
q2

=
1
g

(A
2
±

√
A2

4
+ g

Aq2 cot (θ1 − θ0)− g
q4

)
. (6.3)

In this expression, the plus sign corresponds to the root of the characteristic equation γ1 ∈ (γ∗, θmin) and the minus
sign corresponds to the root γ2 ∈ (θmax, γ∗ + π). Correspondingly, we consider simple waves of either the first or
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Fig. 1

second characteristic families. For the solution γ∗ = (θ1 + θ0)/2 − π/2 considered here, we have θmax = θ1 and
θmin = θ0 for A > 0 and θmax = θ0 and θmin = θ1 for A < 0. The radicand on the right side of (6.3) is positive if

q2 = q2
m − 2gh > 2g tan ((θ1 − θ0)/2)/A = 2g tan (Ah/2)/A. (6.4)

For the equality in (6.4), we obtain an equation that allows us to find unambiguously the critical depth hk.
In a simple wave domain, the condition 0 < h < hk must be satisfied. As A → 0 (transition to shearless flow),
Eq. (6.4) transforms to the classical condition of flow supercriticality q >

√
gh. Because tan x > x for x ∈ (0, π/2),

it follows from (6.4) that the condition of flow supercriticality q >
√
gh holds for A 6= 0 as well. Hence, Eq. (6.4) is

a stricter requirement (compared with the supercriticality condition). Generally, if A 6= 0, the functions θ0(1,2)(h)
are given by the quadrature

θ0(1,2)(h) = −
h∫

h0

(
A

2
±

√
A2

4
+ g

A(q2
m − 2gh′) cot (Ah′)− g

(q2
m − 2gh′)2

)
dh′ + θ00,

where θ00 = const. Next, from (6.3), we find the slope of the characteristic to the x axis

γ1(h) = θ01(h)− arccot
q2
m − 2gh

g

(
A

2
+

√
A2

4
+ g

A(q2
m − 2gh) cot (Ah)− g

(q2
m − 2gh)2

)
in a simple wave of the first family or a similar angle

γ2(h) = θ02(h)− arccot
q2
m − 2gh

g

(
A

2
−

√
A2

4
+ g

A(q2
m − 2gh) cot (Ah)− g

(q2
m − 2gh)2

)
+ π

in a simple wave of the second family. In the limit h → 0, which corresponds to a simple wave flow over a dry
bottom, we have γ1(h) → θ01(0) and γ2(h) → θ02(0). To complete the description of simple waves in Eulerian–
Lagrangian coordinates, it is necessary to integrate additionally the second equation in system (5.3) with respect
to θ(h, λ) and calculate H(h, λ) = A−1θλ(h, λ). However, in the Eulerian description, the solution is known. It is
given by the relations

q =
√
q2
m − 2gh, θ = Az + θ0i(h), γi = γi(h),

where θ0i(h) and γi(h) were calculated above. For i = 1 and 2, we obtain a simple wave of the first and second
family, respectively.

We consider the wave centered on the line x = 0, y = 0 in the space (x, y, z). This implies that the
characteristic planes h = const pass through this line. Then, relation (5.7) takes the form

−x sin γ + y cos γ = 0. (6.5)

We introduce cylindrical coordinates r, ϕ, and z in the space using the equalities x = r cosϕ and y = r sinϕ. From
the simplified equality (6.5) γi(h) = ϕ, we find the function h = h(ϕ) when the function γi(h) is known. These
formulas define completely a centered simple wave in Eulerian coordinates. As A → 0, this solution reduces to a
classical Prandtl–Mayer wave.
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Let us give a physical interpretation of the solution derived and describe some of its characteristics. Let a
uniform shear flow

h = h0, q = q0 =
√
q2
m − 2gh0, θ = Az + θ00

(0 < h0 < hk and q2
m = q2

0 + 2gh0) move along a bank whose shape is a developable surface Γ0 (see Fig. 1) defined
by the equation

ϕ = Az + θ00.

Here the polar angle ϕ varies within θ00 6 ϕ 6 Ah0 + θ00. The uniform shear flow adjoins a centered simple
wave of the second family along the characteristic ϕ = γ2(h0). In the simple-wave region γ2(h0) > ϕ > γ2(h1),
where h1 < h0 and the equation ϕ = γ2(h1) defines the closing simple-wave characteristic, the flow is transformed
into another uniform shear flow

h = h1, q = q1 =
√
q2
m − 2gh1, θ = Az + θ02(h1),

which moves along an overhanging bank having the shape of a developable surface ϕ = Az + θ02(h1) for θ02(h1)
< ϕ < Ah0 + θ02(h1). In the simple-wave region, the free surface Γ1 defined by the equation z = h(ϕ) is also
developable. In the simple wave of the second family, the depth h decreases from h0 to h1, and the velocity modulus
q increases from q0 to q1 with increase in the angle ϕ. Figure 1 shows the flow pattern in a simple centered wave
during spreading of shear flow over the dry channel for A = π/(5h0), θ00 = 0, and q0/

√
gh0 = 1.56. The scales

along the coordinate axes are referred to h0. Figure 1 also shows the variation of the horizontal velocity component
u over the depths in the incident uniform shear flow. The subscripts 0, 1/2, and 1 correspond to the values of the
velocity at z = 0, z = h0/2, and z = h0, respectively. The characteristic surfaces h = const and the surface Γ0 pass
through the straight line x = 0, y = 0, 0 6 z 6 h.
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